
Bull. Malays. Math. Sci. Soc. (2017) 40:1277–1289
DOI 10.1007/s40840-016-0372-9

Ricci Semi-symmetric Hypersurfaces in Complex
Two-Plane Grassmannians

Young Jin Suh1 · Doo Hyun Hwang2 ·
Changhwa Woo2

Received: 24 February 2015 / Revised: 6 April 2016 / Published online: 22 April 2016
© Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2016

Abstract In this paper, we considered Ricci semi-symmetric real hypersurface in
complex two-plane Grassmannians. Then we prove the non-existence of Ricci semi-
symmetric Hopf hypersurfaces in complex two-plane Grassmannians by using the
method of simultaneous diagonalization for pairwise commutative matrices.
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Introduction

The complex two-plane Grassmannian G2(C
m+2) is defined by the set of all complex

two-dimensional linear subspaces in Cm+2. It is a kind of Hermitian symmetric space
of compact irreducible type with rank 2. Remarkably, the manifolds are equipped with
both a Kähler structure J and a quaternionic Kähler structure J satisfying J Jν = Jν J
(ν = 1, 2, 3) where {Jν}ν=1,2,3 is an orthonormal basis of J. When m = 1, G2(C

3)

is isometric to the two-dimensional complex projective space CP2 with constant
holomorphic sectional curvature eight. When m = 2, we note that the isomorphism
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Spin(6) � SU(4) yields an isometry between G2(C
4) and the real Grassmann Man-

ifold G+
2 (R6) of oriented two-dimensional linear subspaces in R

6. In this paper we
always assume m ≥ 3 (see [2]).

Suppose M is a real hypersurface inG2(C
m+2). Let N be a local unit normal vector

field of M in G2(C
m+2). Since G2(C

m+2) has the Kähler structure J , we may define
the Reeb vector field ξ = −J N and a one-dimensional distribution [ξ ] = C⊥ where
C denotes the orthogonal complement in TxM , x ∈ M , of the Reeb vector field ξ . The
Reeb vector field ξ is said to beHopf if C (or C⊥) is invariant under the shape operator
A of M . The one-dimensional foliation of M defined by the integral curves of ξ is
said to be a Hopf foliation of M . We say that M is a Hopf hypersurface if and only if
the Hopf foliation of M is totally geodesic. By the formulas in [7, Sect. 2], it can be
checked that ξ is Hopf vector field if and only if M is Hopf hypersurface.

From the quaternionicKähler structureJ ofG2(C
m+2), there naturally exists almost

contact 3-structure vector fields ξν = −JνN , ν = 1, 2, 3. PutQ⊥ = Span{ ξ1, ξ2, ξ3}.
It is a 3-dimensional distribution in the tangent bundle T M of M . In addition, denoted
byQ the orthogonal complement ofQ⊥ in T M . It is the quaternionicmaximal subbun-
dle of T M . Thus, the tangent bundle of M is expressed by a direct sum ofQ andQ⊥.

For two distributions C⊥ and Q⊥ defined above, we may consider two natural
invariant geometric properties under the shape operator A ofM , that is, AC⊥ ⊂ C⊥ and
AQ⊥ ⊂ Q⊥. By using the result of Alekseevskii [1], Berndt and Suh [2, Theorem 1]
have classified all real hypersurfaceswith twonatural invariant properties inG2(C

m+2)

as follows:
Let M be a real hypersurface in G2(C

m+2), m ≥ 3. Then both [ξ ] and Q⊥ are
invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G2(C
m+1) in G2(C

m+2),
or

(B) m is even, say m = 2n, and M is an open part of a tube around a totally geodesic
HPn in G2(C

m+2).

In the case (A), we say M is of Type (A). Similarly in the case (B) we say M is of
Type (B).

Regarding the parallelism of (1, 1)-type tensor field T , (i.e.,∇T = 0) on real hyper-
surface M in G2(C

m+2),m ≥ 3, there are many well-known results. Many geometers
have verified non-existence properties and some characterizations which show many
kinds of parallelisms, such as parallel, Reeb parallel, or generalized Tanaka-Webster
parallel (see [13,14,16] and [17]).

Recently, Panagiotidou andTripathi [10] considered the notionof real hypersurfaces
with semi-parallel normal Jacobi operator R̄N in G2(C

m+2), that is, R(X,Y ) · R̄N =
0. Motivated by this, we want to study the semi-parallelism on Ricci tensor. The Ricci
tensor S on real hypersurface M in G2(C

m+2) is defined by

g(SX,Y ) =
4m−1∑

i=1

g(R(ei , X)Y, ei ),

where {e1, . . . , e4m−1} is an orthonormal basis of the tangent space TxM , x ∈ M in
G2(C

m+2) and X,Y ∈ TxM (see [15]). Hereafter, we consider that X and Y are all
tangent vector fields on M . A Riemannian manifold is called Ricci semi-symmetric if
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R(X,Y ) · S = 0, (*)

where R is the curvature tensor of type (1,3) and R(X,Y ) denotes the derivation of
the tensor algebra at each point of the tangent space (see [5]).
In this paper, we consider Ricci semi-symmetric Hopf hypersurface M in G2(C

m+2).
By [2, Theorem 1] and that of simultaneous diagonalizable matrices in [3], we

prove the non-existence of Ricci semi-symmetric Hopf hypersurface M in G2(C
m+2)

as follows:

Theorem There does not exist a Ricci semi-symmetric Hopf hypersurface M in com-
plex two-plane Grassmannians G2(C

m+2), m ≥ 3.

Since semi-parallelism, that is, R(X,Y ) ·S = 0 is weaker than parallel Ricci tensor,
i.e., ∇S = 0 (see [16]), by our Theorem mentioned above we obtain the following
result

Corollary 1 There does not exist aHopf hypersurface M in complex two-planeGrass-
mannians G2(C

m+2), m ≥ 3, with parallel Ricci tensor.

In [18], the Ricci tensor S for a real hypersurface M in G2(C
m+2) is said to be

recurrent if (∇X S)Y = ω(X)SY , where ω is a one form defined on M in G2(C
m+2).

From [9, Theorem 20] and our Theorem, we also get another corollary as follows:

Corollary 2 There does not exist aHopf hypersurface M in complex two-planeGrass-
mannians G2(C

m+2), m ≥ 3, with recurrent Ricci tensor.

In order to prove our main result, the paper is organized as follows. In Sect. 1
we recall some fundamental formulas including the Gauss equation for real hyper-
surfaces in G2(C

m+2). In Sect. 2 we prove that the Reeb vector field ξ of a Ricci
semi-symmetric Hopf hypersurface in G2(C

m+2) belongs to either the distribution
Q or the distribution Q⊥. Some lemmas for proving commuting conditions between
symmetric operators are given. In Sect. 3, we show that a Ricci semi-symmetric Hopf
hypersurface in G2(C

m+2) satisfies AQ⊥ ⊂ Q⊥ and check a non-existence property
for real hypersurface in G2(C

m+2) with given conditions.

1 Preliminaries

In this paper, suppose M is a real hypersurface of G2(C
m+2), m ≥ 3, that is, a

submanifold of codimension 1 in G2(C
m+2). Let us denote by R the Riemannian

curvature and R̄ the Riemannian curvature tensor on G2(C
m+2), respectively. That

is, R = R̄|M tensor on M . Hereafter unless otherwise stated, X,Y, Z , and W are
tangent vector fields on M . In this section, we recall some basic formulas and the
Gauss equation for a real hypersurface in G2(C

m+2) (see [4,7,12,15]). The induced
Riemannian metric on M (resp., G2(C

m+2)) is denoted by g (resp., ḡ). Let ∇ and ∇̄
be the Riemannian connections of (M, g) and (G2(C

m+2), ḡ), respectively. Let N be
a local unit normal vector field of M and A the shape operator of M with respect to
N . J (resp., J=Span{Jν}ν=1,2,3) denotes the Kähler structure (resp., the quaternionic
Kähler structure). We put
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J X = φX + η(X)N and JνX = φνX + ην(X)N ,

where φX (resp., φνX ) is the tangential part of J X (resp., JνX ), and η(X) = g(X, ξ)

(resp., ην(X) = g(X, ξν)) is the coefficient of the normal part of J X (resp., JνX ). In
this case, we call φ the structure tensor field of M .

The Gauss equation is given by

R(X,Y )Z = g(Y, Z)X − g(X, Z)Y + g(AY, Z)AX − g(AX, Z)AY

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX,Y )φZ

+
3∑

ν=1

{
g(φνY, Z)φνX − g(φνX, Z)φνY − 2g(φνX,Y )φν Z

}

+
3∑

ν=1

{
g(φνφY, Z)φνφX − g(φνφX, Z)φνφY

}

−
3∑

ν=1

{
η(Y )ην(Z)φνφX − η(X)ην(Z)φνφY

}

−
3∑

ν=1

{
η(X)g(φνφY, Z) − η(Y )g(φνφX, Z)

}
ξν. (1.1)

From the definition of the Ricci tensor S and by the fundamental formulas in [15,
Sect. 2], we have

SX = (4m + 7)X − 3η(X)ξ + hAX − A2X

+
3∑

ν=1

{−3ην(X)ξν + ην(ξ)φνφX − ην(φX)φνξ − η(X)ην(ξ)ξν}, (1.2)

where h denotes the trace of the shape operator A in M with respect to N .
The structure Jacobi operator Rξ is defined by [8, Sect. 1]

Rξ (X) = R(X, ξ)ξ

= X − η(X)ξ −
3∑

ν=1

{
ην(X)ξν − η(X)ην(ξ)ξν

+ 3g(φνX, ξ)φνξ + ην(ξ)φνφX
}

+ η(Aξ)AX − η(AX)Aξ. (1.3)

[6, Lemma A] If M is a connected orientable Hopf hypersurface in G2(C
m+2), then

we have the following two equations:

Yα = (ξα)η(Y ) − 4
3∑

ν=1

ην(ξ)ην(φY ), (1.4)
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and

αAφX + αφAX − 2AφAX + 2φX = 2
3∑

ν=1

{
−ην(X)φξν − ην(φX)ξν

− ην(ξ)φνX + 2η(X)ην(ξ)φξν + 2ην(φX)ην(ξ)ξ
}
, (1.5)

where the Reeb function α = η(Aξ) on M .

2 A Key Lemma

Wefirst give the fundamental equation for aRicci semi-symmetric real hypersurfaceM
inG2(C

m+2). A real hypersurfaceM is calledRicci semi-symmetric if R(X,Y )·S = 0,
that is,

(
R(X,Y )S

)
Z = 0 for any vector field X,Y , and Z . It is equivalent to

R(X,Y )(SZ) = S(R(X,Y )Z). (2.1)

Since the Ricci tensor S is symmetric, we have

R(SX,Y )Z = R(X, SY )Z . (∗∗)

In order to prove our Theorem, let us show that the Reeb vector field ξ belongs to
either or the distribution Q⊥ = Span{ ξ1, ξ2, ξ3} or its orthogonal complement the
distribution Q with the assumption of Ricci semi-symmetric as follows:

Lemma 2.1 Let M be a Ricci semi-symmetric Hopf hypersurface in G2(C
m+2), m ≥

3. Then the Reeb vector field ξ belongs to either the distributionQ or the distribution
Q⊥.

Proof We consider that the Reeb vector fields ξ satisfies

ξ = η(X0)X0 + η(ξ1)ξ1

for some unit vectors X0 ∈ Q, ξ1 ∈ Q⊥, and η(X0)η(ξ1) 	= 0. Let Aξ = αξ . In the
case of α = 0, by (1.4), ξ belongs to eitherQ orQ⊥ which contradicts the assumption
(see [12]). If α 	= 0, from (1.2) (resp., (1.3)), we have

Sξ = σ0ξ − 4η1(ξ)ξ1, where σ0 := 4m + 4 + hα − α2, (2.2)

Rξ (ξ1) = αAξ1 − α2η1(ξ)ξ. (2.3)

Substituting X = Y = Z = ξ into (**), we get R(Sξ, ξ)ξ = R(ξ, Sξ)ξ , which
means Rξ (Sξ) = 0. Since −4η1(ξ) 	= 0 and (1.3), we have Rξ (ξ1) = 0. From (2.3),
we obtain Aξ1 = αη1(ξ)ξ and AX0 = αη(X0)ξ .

By putting X = X0 into (1.5), we have

AφX0 = σ1φX0, where σ1 := −4η2(X0)

α
. (2.4)
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1282 Y. J. Suh et al.

By using (2.4) and substituting X = φX0 into (1.2) (resp., (1.3)), we obtain

SφX0 = σ2φX0, where σ2 = 4m + 8 + hσ1 − σ 2
1 , (2.5)

Rξ (φX0) = 0. (2.6)

By substituting X = φX0, Y = ξ , X = ξ into (**) and using (2.2), (2.5), (2.6), we
have 0 = −4η1(ξ)R(φX0, ξ1)ξ.

Since we assumed η(X0)η(ξ1) 	= 0, this equation becomes

0 = R(φX0, ξ1)ξ. (2.7)

Putting X = φX0,Y = ξ1, and Z = ξ into (1.1) and using (2.4), (2.7) becomes

0 = R(φX0, ξ1)ξ

= η1(ξ)φX0 + g(φ2
1X0, ξ)φ1φ

2X0 − η21(ξ1)φ1φ
2X0 + αη1(ξ)AφX0

= −4η1(ξ)η2(X0)φX0.

This means φX0 = 0. However g(φX0, φX0) = 1−η2(X0) = η2(ξ1) never vanishes,
it is a contradiction. Accordingly, the lemma is proved. 
�

Next we further study the case ξ ∈ Q⊥.

Lemma 2.2 [3] If A,B,C are diagonalizable matrices and commute with each other,
then there exists a basis {ek}4m−1

k=1 which simultaneously diagonalizes A,B,C.

Lemma 2.3 [11] Let M be a Hopf hypersurface in G2(C
m+2), m ≥ 3. If the Reeb

vector field ξ belongs to the distribution Q⊥, then SA = AS.

On the other hand, if ξ = ξ1 ∈ Q⊥, (1.3) is reduced to

Rξ (X) = X − η(X)ξ + 2η2(X)ξ2 + 2η3(X)ξ3

−φ1φX + η(Aξ)AX − η(AX)Aξ (2.8)

and we also have (see [11])

φAX = 2η3(AX)ξ2 − 2η2(AX)ξ3 + φ1AX, (2.9)

AφX = 2η3(X)Aξ2 − 2η2(X)Aξ3 + Aφ1X. (2.10)

Related to the shape operator A and the structure Jacobi operator Rξ , we assert the
following:

Lemma 2.4 Let M be a Hopf hypersurface in G2(C
m+2), m ≥ 3. If the Reeb vector

field ξ belongs to the distribution Q⊥, then Rξ A = ARξ .
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Proof Applying A (Substituting X as AX ) to (2.8) and using (2.9) and (2.10), we
have

{
ARξ X = αA2X − (α3 + 2α)η(X)ξ + 2AX,

Rξ AX = αA2X − (α3 + 2α)η(X)ξ + 2AX.

Thus, we have Rξ A = ARξ . 
�

3 Proof of Theorem

In this section,we prove the non-existence ofRicci semi-symmetricHopf hypersurface
in G2(C

m+2). For this purpose, we give the following:

Lemma 3.1 There does not exist any Ricci semi-symmetric Hopf hypersurface in
G2(C

m+2), m ≥ 3 with ξ belongs to Q⊥ everywhere.

Proof Putting Y = Z = ξ into (**) (resp., (2.1)), we have

Rξ (SX) = σ Rξ (X) (3.1)

SRξ (X) = σ Rξ (X), (3.2)

where σ = 4m + hα − α2. Thus,

Rξ S = SRξ . (3.3)

By Lemmas 2.2, 2.3, 2.4, and 3.3, we know that there exists an orthonormal basis

{ek}4m−1
k=1 such that

Aek = λkek, (3.4)

Rξ (ek) = γkek, (3.5)

Sek = tkek, (3.6)

where k = 1, 2, . . . , 4m − 1. Since Rξ (ξ) = 0, there exist j ∈ {1, . . . , 4m − 1}, such
that Rξ (e j ) = 0.

Thus, the tangent space can be split into TxM = D0(x) ⊕ D⊥
0 (x), where x ∈ M

and

{
D0(x) = span

{
e j ∈ {ek}4m−1

k=1 | Rξ (e j ) = 0
}

at x,

D⊥
0 (x) = span

{
ei ∈ {ek}4m−1

k=1 | Rξ (ei ) 	= 0
}

at x .

Since ξ = ξ1, the equation (1.4) is reduced to

SX = (4m + 7)X − 7η(X)ξ − 2η2(X)ξ2 − 2η3(X)ξ3

+ φ1φX + hAX − A2X. (3.7)
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1284 Y. J. Suh et al.

By (3.4) and (3.6), putting X = e j ∈ D0(x) into (2.8) (resp., (3.7)), we have

0 = (1 + αλ j )e j − η(e j )(α
2 + 1)ξ + 2η2(e j )ξ2 + 2η3(e j )ξ3 − φ1φe j , (3.8)

t j e j = (4m + 7 + hλ j − λ2j )e j − 7η(e j )ξ − 2η2(e j )ξ2 − 2η3(e j )ξ3 + φ1φe j .
(3.9)

Combining (3.8) and (3.9), we get

(4m + 8 + hλ j − λ2j + αλ j − t j )e j = (α2 + 8)η(e j )ξ. (3.10)

Since Rξ (X) never vanishes for all tangent vectors X belongs to D1(x). Thus,
SRξ (X) = σ Rξ (X) is equivalent to SX = σ X for any X ∈ D1(x). Since Rξ (ξ) = 0,
the Reeb vector field ξ belongs toD0(x), thus dimD0(x) ≥ 1.

Now, we may consider the following cases:

Case I dimD0(x) = 1.

In this case, TxM = D0(x)⊕D1(x) = [ξ ](x)⊕D1(x). SinceD1(x) is φ-invariant
vector space and Sξ = σξ , we have SX = σ X for any tangent vector field X
on M . Thus, we have Sφ = φS. By a result of Suh [15, Theorem]: Let M be a
connected orientable Hopf hypersurface in G2(C

m+2) with commuting Ricci tensor,
i.e., Sφ = φS,m ≥ 3. Then M is locally congruent to a real hypersurface of Type (A).

Case II dimD0(x) = � ≥ 2.

In this case, TxM = D0(x) ⊕ D1(x). Since the Reeb vector field ξ satis-
fies Aξ = αξ , Rξ (ξ) = 0ξ and Sξ = σξ , we may put D0(x) = [ξ ](x) ⊕
span{ek2 , . . . , ek j , . . . , ek�

}, where j ≥ 2. Then we have η(ek j ) = 0 for 2 ≤ j ≤ l.
Putting X = ek j into (2.8) and (3.7), we have

0 = Rξ (ek j ) = (1 + αλk j )ek j + 2η2(ek j )ξ2 + 2η3(ek j )ξ3 − φ1φek j , (3.11)

tk j ek j = Sek j = (4m + 8 + hλk j − λ2k j + αλk j )ek j . (3.12)

If we apply the shape operator A to (3.11), we obtain

0 = (1 + αλk j )Aek j + 2η2(ek j )Aξ2 + 2η3(ek j )Aξ3 − Aφ1φek j
= (2 + αλk j )λk j ek j .

So we may consider the following two subcases:

Subcase I 2 + αλk j = 0, where j ≥ 2.

2 + αλk j = 0

(
i.e., λk j = − 2

α

)
. (3.13)

Using (3.13), (3.11) is changed into

0 = −ek j + 2η2(ek j )ξ2 + 2η3(ek j )ξ3 − φ1φek j . (3.14)
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Applying φ1 to (3.14), we have

φ1ek j = 2η2(ek j )ξ3 − 2η3(ek j )ξ2 + φek j . (3.15)

Since ξ = ξ1, (1.5) is reduced to

AφAX = α

2
AφX + α

2
φAX + φX + φ1X − 2η2(X)ξ3 + 2η3(X)ξ2. (3.16)

By putting X = ek j into (3.16) and by using (3.13) and (3.15), we get

Aφek j = σ3φek j where σ3 = −2α

α2 + 4
. (3.17)

Substituting X = φek j into (1.2) (resp., (1.3)) and using (3.17), we obtain

Rξ (φek j ) = (ασ3 + 2)φek j , (3.18)

Sφek j = (4m + 6 + hσ3 − σ 2
3 )φek j . (3.19)

By using (3.18) and (3.19) and substituting X = φek j into (3.1), it follows that

(6 + σ3h − hα − σ 2
3 + α2)(ασ3 + 2)φek j = 0.

Since ασ3 + 2 = 8
α2+8

> 0 ( i.e., ασ3 + 2 never vanishes), we have

6 + σ3h − hα − σ 2
3 + α2 = 0, (3.20)

Sek j =
(
4m + 6 − h

2

α
−

(
2

α

)2 )
ek j . (3.21)

By using (3.19), (3.21) and putting X = φek j , Y = ek j into (**), we obtain

(
σ3 + 2

α

) (
h − σ3 + 2

α

)
R(φek j , ek j )Z = 0. (3.22)

By (3.17), the coefficient factors of (3.22) never vanishes, due to σ3+ 2
α

= 8
α(α2+4)

	= 0

and by (3.20), h − σ3 + 2
α

= α4+14α2+36
α(α2+6)

	= 0. Thus, (3.22) is reduced to

R(φek j , ek j )Z = 0. (3.23)

By putting Z = ek j into (3.23) and by using (1.1), the structure tensors φ and φν are
skew-symmetric and η(ek j ) = 0, we have the following equation.

0 = R(φek j , ek j )ek j

= g(ek j , ek j )φek j − g(φ2ek j , ek j )φek j − 2g(φ2ek j , ek j )φek j
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1286 Y. J. Suh et al.

+
3∑

ν=1

{
−g(φνφek j , ek j )φνek j − 2g(φνφek j , ek j )φνek j

+ g(φνφek j , ek j )φνφ
2ek j

}
+ g(Aek j , ek j )Aφek j

= (4 + λk j σ3)φek j − 4
3∑

ν=1

g(φνφek j , ek j )φνek j . (3.24)

Taking the inner product of (3.24) with φek j , we obtain

0 = (4 + λk j σ3)g(φek j , φek j ) − 4
3∑

ν=1

g(φνφek j , ek j )g(φνek j , φek j )

= 4
(α2 + 5

α2 + 4

)
+ 4

3∑

ν=1

g2(φνφek j , ek j ),

where we have used λk j = − 2
α
and σ3 = −2α

α2+4
. Since the right side of the equation is

greater than 4, this is a contradiction. Thus, Subcase I cannot occur.

Subcase II λk j = 0, where j ≥ 2. Putting X = ek j into (2.8),

0 = Rξ (ek j ) = ek j + 2η2(ek j )ξ2 + 2η3(ek j )ξ3 − φ1φek j . (3.25)

Applying φ1 (resp., A) to (3.25), we have

0 = φ1ek j + 2η2(ek j )ξ3 − 2η3(ek j )ξ3 + φek j , (3.26)

0 = Aφ1ek j + 2η2(ek j )Aξ3 − 2η3(ek j )Aξ3 + Aφek j . (3.27)

By (2.10), we get

Aφ1ek j = 0. (3.28)

Putting X = ek j into (3.16), we obtain

0 = α

2
Aφek j + 4η3(ek j )ξ2 − 4η2(ek j )ξ3. (3.29)

Taking the inner product of (3.29) with φ1ek j and using (3.28), we have η23(ek j ) +
η22(ek j ) = 0, that is,

η3(ek j ) = η2(ek j ) = 0. (3.30)

By using (3.28) and (3.30), (3.27) becomes

Aφek j = 0. (3.31)
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By (3.26), (3.31) and putting X = φek j into (2.8), we get

Rξ (φek j ) = φek j + 2η3(ek j )ξ2 − 2η2(ek j )ξ3 + φ1ek j + αAφek j = 0.

Thus,D0(x)�[ξ ](x) is φ-invariant. By virtue of (3.10), S has the same eigenvalue
4m + 8 corresponding to each ek j ∈ D0(x) � [ξ ](x), where j ≥ 2. Since Sξ = σξ ,
D0(x) � [ξ ](x) is φ-invariant and SX = σ X for X ∈ D1(x), we have SφX = φSX
for all tangent vectors X on M . Again, by [15, Theorem], M is locally congruent to a
real hypersurface of Type (A).

Now, we verify whether a real hypersurface of Type (A) denoted by MA satisfies
the assumption in our Theorem. We assume that MA satisfies the condition of Ricci
semi-symmetric.

Putting Y = ξ and Z = ξ into (2.1), we have

SRξ (X) = σ Rξ (X), (3.32)

where σ = 4m + hα − α2.
In [2, Proposition 3], we obtain the following:

SX =

⎧
⎪⎪⎨

⎪⎪⎩

(4m + hα − α2)ξ if X = ξ ∈ Tα

(4m + 6 + hβ − β2)ξν if X = ξν ∈ Tβ

(4m + 6 + hλ − λ2)X if X ∈ Tλ

(4m + 8)X if X ∈ Tμ,

Rξ (X) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if X = ξ ∈ Tα

(αβ + 2)ξν if X = ξν ∈ Tβ

(αλ + 2)φX if X ∈ Tλ

0 if X ∈ Tμ, and

α = √
8 cot(

√
8r), β = √

2 cot(
√
2r), λ = −√

2 tan(
√
2r), μ = 0.

Putting X = ξ2 (resp., X ∈ Tλ) into (3.32), we have

6 + hβ − β2 = hα − α2, (3.33)

6 + hλ − λ2 = hα − α2. (3.34)

Combining (3.33) and (3.34), we have (h − β − λ)(β − λ) = 0. Since β 	= λ, it is

h − β − λ = 0. (3.35)

Combining (3.35) and (3.33), we have

4 = hα − α2 = βλ.

This contradicts to the value of β and λ.
Hence, themodel spaceMA inG2(C

m+2) does not satisfy theRicci semi-symmetric
condition. 
�
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For a Hopf hypersurface with ξ ∈ Q, by [7, Main Theorem], we know that M is
locally congruent to a real hypersurface of Type (B). Now we check whether a Hopf
hypersurface of Type (B) denoted byMB satisfies theRicci semi-symmetric condition.
On T MB , since ξ ∈ Q and h = Tr(A) = α + (4n − 1)β is a constant, putting Y = ξ

and Z = ξ into (*), we have

SRξ (X) = σ0Rξ (X), (3.36)

where σ0 = 4m + 4 + hα − α2.
In [2, Proposition 2], we obtain the following:

SX =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(4m + 4 + hα − α2)ξ if X = ξ ∈ Tα

(4m + 4 + hβ − β2)ξ� if X = ξ� ∈ Tβ

(4m + 8)φξ� if X = φξ� ∈ Tγ

(4m + 7 + hλ − λ2)X if X ∈ Tλ

(4m + 7 + hμ − μ2)X if X ∈ Tμ,

(3.37)

Rξ (X) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if X = ξ ∈ Tα

αβξ� if X = ξ� ∈ Tβ

4φξ� if X = φξ� ∈ Tγ

(1 + αλ)φX if X ∈ Tλ

(1 + αμ)φX if X ∈ Tμ.

(3.38)

Putting X = φ�ξ (resp., X ∈ Tλ) into (3.36). It gives hβ − β2 = 4 and hβ −
β2 = − 1. It causes a contradiction.

Remark 3.2 The model space of MB in G2(C
m+2) does not satisfy the Ricci semi-

symmetric condition.

Combining Lemmas 2.1, 3.1 and Remark 3.2, this completes the proof of Theorem
in the introduction.
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