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Abstract In this paper, we considered Ricci semi-symmetric real hypersurface in
complex two-plane Grassmannians. Then we prove the non-existence of Ricci semi-
symmetric Hopf hypersurfaces in complex two-plane Grassmannians by using the
method of simultaneous diagonalization for pairwise commutative matrices.
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Introduction

The complex two-plane Grassmannian G, (C™"*2) is defined by the set of all complex
two-dimensional linear subspaces in C"*+2. It is a kind of Hermitian symmetric space
of compact irreducible type with rank 2. Remarkably, the manifolds are equipped with
both a Kihler structure J and a quaternionic Kéhler structure  satisfying J J, = J,J
(v =1, 2,3) where {J,},=1,2,3 is an orthonormal basis of J. When m = 1, G»(C?)
is isometric to the two-dimensional complex projective space CP? with constant
holomorphic sectional curvature eight. When m = 2, we note that the isomorphism
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Spin(6) >~ SU(4) yields an isometry between G>(C* and the real Grassmann Man-
ifold G;‘ (R®) of oriented two-dimensional linear subspaces in R®. In this paper we
always assume m > 3 (see [2]).

Suppose M is a real hypersurface in G2(C™*2). Let N be a local unit normal vector
field of M in G (C™*2). Since G (C™*2) has the Kihler structure J, we may define
the Reeb vector field ¢ = —J N and a one-dimensional distribution [£] = C where
C denotes the orthogonal complement in 7, M, x € M, of the Reeb vector field &. The
Reeb vector field & is said to be Hopfif C (or C1) is invariant under the shape operator
A of M. The one-dimensional foliation of M defined by the integral curves of & is
said to be a Hopf foliation of M. We say that M is a Hopf hypersurface if and only if
the Hopf foliation of M is totally geodesic. By the formulas in [7, Sect. 2], it can be
checked that £ is Hopf vector field if and only if M is Hopf hypersurface.

From the quaternionic Kihler structure J of G, (C"*?), there naturally exists almost
contact 3-structure vector fields &, = —J,N,v =1, 2, 3. Put ol = Span{ &1, &, &3}.
It is a 3-dimensional distribution in the tangent bundle 7'M of M. In addition, denoted
by Q the orthogonal complement of Q- in 7' M. It is the quaternionic maximal subbun-
dle of T M. Thus, the tangent bundle of Mis expressed by a direct sum of Q and Q.

For two distributions C+ and Q1 defined above, we may consider two natural
invariant geometric properties under the shape operator A of M, thatis, AC* C C*and
AQL c Ot By using the result of Alekseevskii [1], Berndt and Suh [2, Theorem 1]
have classified all real hypersurfaces with two natural invariant properties in G (C”2)
as follows:

Let M be a real hypersurface in Go(C”*2), m > 3. Then both [£] and O~ are
invariant under the shape operator of M if and only if

(A) M is an open part of a tube around a totally geodesic G»(C"*1!) in G»(C"1?),
or

(B) m iseven, say m = 2n, and M is an open part of a tube around a totally geodesic
HP" in Go(C™+2).

In the case (A), we say M is of Type (A). Similarly in the case (B) we say M is of

Type (B).

Regarding the parallelism of (1, 1)-type tensor field T', (i.e., VT = 0) on real hyper-
surface M in G, (Cm+2), m > 3, there are many well-known results. Many geometers
have verified non-existence properties and some characterizations which show many
kinds of parallelisms, such as parallel, Reeb parallel, or generalized Tanaka-Webster
parallel (see [13,14,16] and [17]).

Recently, Panagiotidou and Tripathi [ 10] considered the notion of real hypersurfaces
with semi-parallel normal Jacobi operator Ry in G2(C"12), thatis, R(X,Y)- Ry =
0. Motivated by this, we want to study the semi-parallelism on Ricci tensor. The Ricci
tensor S on real hypersurface M in G,(C™*?) is defined by

4m—1
g(SX.Y) = D g(R(e;. X)Y. ep),
i=1
where {eq, ..., eqn—1} is an orthonormal basis of the tangent space T, M, x € M in
G>(C™*2) and X, Y € T, M (see [15]). Hereafter, we consider that X and Y are all
tangent vector fields on M. A Riemannian manifold is called Ricci semi-symmetric if
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R(X,Y)-S=0, ()

where R is the curvature tensor of type (1,3) and R(X, Y) denotes the derivation of

the tensor algebra at each point of the tangent space (see [5]).

In this paper, we consider Ricci semi-symmetric Hopf hypersurface M in G, (C"*2).
By [2, Theorem 1] and that of simultaneous diagonalizable matrices in [3], we

prove the non-existence of Ricci semi-symmetric Hopf hypersurface M in G, (C"*2)

as follows:

Theorem There does not exist a Ricci semi-symmetric Hopf hypersurface M in com-
plex two-plane Grassmannians Gz((Cm+2), m > 3.

Since semi-parallelism, thatis, R(X, Y)-S = 0 is weaker than parallel Ricci tensor,
i.e., VS = 0 (see [16]), by our Theorem mentioned above we obtain the following
result

Corollary 1 There does not exist a Hopf hypersurface M in complex two-plane Grass-
mannians Gg((C"H'z), m > 3, with parallel Ricci tensor.

In [18], the Ricci tensor S for a real hypersurface M in Gz(C’"+2) is said to be
recurrent if (VxS)Y = w(X)SY, where w is a one form defined on M in G,(C"12).
From [9, Theorem 20] and our Theorem, we also get another corollary as follows:

Corollary 2 There does not exist a Hopf hypersurface M in complex two-plane Grass-
mannians Gz(Cm+2), m > 3, with recurrent Ricci tensor.

In order to prove our main result, the paper is organized as follows. In Sect. 1
we recall some fundamental formulas including the Gauss equation for real hyper-
surfaces in Go(C™*2). In Sect. 2 we prove that the Reeb vector field & of a Ricci
semi-symmetric Hopf hypersurface in G,(C"*2) belongs to either the distribution
Q or the distribution Q. Some lemmas for proving commuting conditions between
symmetric operators are given. In Sect. 3, we show that a Ricci semi-symmetric Hopf
hypersurface in G, (C"*+?) satisfies AQ c Q- and check a non-existence property
for real hypersurface in G, (C"+?) with given conditions.

1 Preliminaries

In this paper, suppose M is a real hypersurface of Go(C"*2), m > 3, that is, a
submanifold of codimension 1 in G,(C™*2). Let us denote by R the Riemannian
curvature and R the Riemannian curvature tensor on G (C™12), respectively. That
is, R = R |a tensor on M. Hereafter unless otherwise stated, X, Y, Z, and W are
tangent vector fields on M. In this section, we recall some basic formulas and the
Gauss equation for a real hypersurface in G2 (C™*2) (see [4,7,12,15]). The induced
Riemannian metric on M (resp., G>(C™+2)) is denoted by g (resp., g). Let V and v
be the Riemannian connections of (M, g) and (G2 (C"*2), g), respectively. Let N be
a local unit normal vector field of M and A the shape operator of M with respect to
N. J (resp., J=Span{J,},=12,3) denotes the Kihler structure (resp., the quaternionic
Kaéhler structure). We put
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JX =¢X +n(X)N and J,X = ¢ X + 1, (X)N,

where ¢ X (resp., ¢, X) is the tangential part of J X (resp., J, X), and n(X) = g(X, &)
(resp., ny(X) = g(X, &))) is the coefficient of the normal part of J X (resp., J, X). In
this case, we call ¢ the structure tensor field of M.

The Gauss equation is given by

R(X,Y)Z = g(Y, Z)X — g(X, 2)Y + g(AY, Z)AX — g(AX, Z)AY
+8(@Y, 2)pX — g(¢pX, Z)pY —2g(¢pX, Y)pZ

3
+ > 8@ Y. 20, X — g0, X 2200 Y — 280X, V)00, 2

v=1

3
+ > {2@u0r. 220.0X — g0u9X. )97}

v=1

3
- X {1 0m@9.9X —nxom2)4.6Y |
v=I
3
=D {1X08606Y. 2) —n(1)36.9X. D). (1.1)

v=1

From the definition of the Ricci tensor S and by the fundamental formulas in [15,
Sect. 2], we have

SX = (4m+T1)X —3n(X)E + hAX — A’X

3
+Z{—3nu(X)§u + @)X —m(@X)puE — (X))}, (1.2)

v=1

where /i denotes the trace of the shape operator A in M with respect to N.
The structure Jacobi operator R¢ is defined by [8, Sect. 1]

R:(X) = R(X, §)§

3
= X = n(0g = 2[00 = n(On ©)8,

v=1

+38(¢ X, §)$§ + nv(E)¢V¢X} +n(A§)AX —n(AX)AE.  (1.3)

[6, Lemma A] If M is a connected orientable Hopf hypersurface in G»(C”1?), then
we have the following two equations:

3
Yo = (Ea)n(Y) —4 D 0, Enu(@Y), (1.4)

v=1
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and

3
QCAPX +a@AX — 246 AX +20X =23 | =0 ()68 — M@ X8,

v=1

= (E)py X + 2n(X)n, (§)PEy + 2nu(¢X)77u($)§}, (1.5)

where the Reeb function « = n(A&) on M.

2 A Key Lemma

We first give the fundamental equation for a Ricci semi-symmetric real hypersurface M
in G»(C™*2). Areal hypersurface M is called Ricci semi-symmetricif R(X,Y)-S = 0,
that is, (R(X, Y)S)Z = 0 for any vector field X, Y, and Z. It is equivalent to

R(X,Y)(SZ)=S(R(X,Y)Z). 2.1
Since the Ricci tensor S is symmetric, we have
R(SX,Y)Z = R(X, SY)Z. (s)

In order to prove our Theorem, let us show that the Reeb vector field & belongs to
either or the distribution Q1 = Span{ &1, &, &3} or its orthogonal complement the
distribution Q with the assumption of Ricci semi-symmetric as follows:

Lemma 2.1 Let M be a Ricci semi-symmetric Hopf hypersurface in Go(C"+2), m >
3. Then the Reeb vector field & belongs to either the distribution Q or the distribution
o+

Proof We consider that the Reeb vector fields & satisfies

& =n(Xo)Xo + D&

for some unit vectors Xo € Q, & € QF, and n(Xo)n(&1) # 0. Let A& = «&. In the
case of o = 0, by (1.4), £ belongs to either Q or Q- which contradicts the assumption
(see [12]). If ¢ # O, from (1.2) (resp., (1.3)), we have

S& = op& —4n1(§)&;, where op:=4m+ 4+ ho — o2, 2.2)
Re (1) = a A& — a1 (§)E. (23)

Substituting X = Y = Z = & into (**), we get R(S§,§)§ = R(&, S&)&, which
means Rg(S&) = 0. Since —4n1(§) # 0 and (1.3), we have Rz (§1) = 0. From (2.3),
we obtain A& = an(§)§ and AXg = an(Xop)&.

By putting X = X into (1.5), we have

—4n*(Xo)
—

ApXy =010X9, where o := 2.4
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1282 Y. J. Suh et al.

By using (2.4) and substituting X = ¢ X into (1.2) (resp., (1.3)), we obtain

SopXo = orpXg, where op =4m + 8+ hoy — 012, 2.5)
Re (9 Xo) = 0. (2.6)

By substituting X = ¢ X, ¥ = &, X = & into (¥*) and using (2.2), (2.5), (2.6), we
have 0 = —4n;(§) R(¢ X0, §1)§.
Since we assumed 1(Xo)n(£1) # 0, this equation becomes

0= R(¢Xo, £1)E. 2.7

Putting X = ¢Xo, Y = &1, and Z = &€ into (1.1) and using (2.4), (2.7) becomes

0 = R(¢Xo, £1)¢
= 01 (E)pXo + g(@F X0, )p19> Xo — 0 (ENP19* X0 + ani (§)Ap X
= —4n (E)n* (Xo)p Xo.

This means ¢ Xo = 0. However g(¢ Xo, ¢ Xo) = 1 — 772(X0) = 772(51) never vanishes,
it is a contradiction. Accordingly, the lemma is proved. O

Next we further study the case & € o+

Lemma 2.2 [3] If A,B,C are diagonalizable matrices and commute with each other,
then there exists a basis {ek}gf1 which simultaneously diagonalizes A,B,C.

Lemma 2.3 [11] Let M be a Hopf hypersurface in Go(C"*2), m > 3. If the Reeb
vector field & belongs to the distribution Q, then SA = AS.

On the other hand, if ¢ = &; € ot, (1.3) is reduced to

R:(X) = X —n(X)§ + 2n2(X)é2 + 2n3(X)&3

— 10X +n(A§)AX — n(AX)A§ (2.8)

and we also have (see [11])
PAX =23(AX)E — 2 (AX)E3 + 1 AX, (2.9)
ApX =2n3(X)A& — 2m(X) A3 + Agr1 X. (2.10)

Related to the shape operator A and the structure Jacobi operator Rg, we assert the
following:

Lemma 2.4 Let M be a Hopf hypersurface in Go(C"1?), m > 3. If the Reeb vector
field & belongs to the distribution QF, then R:A = AR¢.

@ Springer



Ricci Semi-symmetric Hypersurfaces. .. 1283

Proof Applying A (Substituting X as AX) to (2.8) and using (2.9) and (2.10), we
have

AR:X = aA%X — (@ + 20)n(X)E + 2AX,
R:AX = aA%X — (& 4+ 2a)n(X)E + 2AX.

Thus, we have R: A = AR:. O

3 Proof of Theorem

In this section, we prove the non-existence of Ricci semi-symmetric Hopf hypersurface
in G»(C™*2). For this purpose, we give the following:

Lemma 3.1 There does not exist any Ricci semi-symmetric Hopf hypersurface in
Gz(Cm+2), m > 3 with & belongs to ot everywhere.

Proof Putting Y = Z = & into (¥¥) (resp., (2.1)), we have

R:(SX) = o Re (X) 3.1)
SRe(X) = 0 Re(X), (3.2)

where o = 4m + ha — o, Thus,
ReS = SRe. (3.3)

By Lemmas 2.2, 2.3, 2.4, and 3.3, we know that there exists an orthonormal basis
{ek}izl_l such that

Aey = Aey, (34)
R (ex) = yrex, (3.5)
Ser = treg, (3.6)

where k =1,2,...,4m — 1. Since R¢(§) = 0, there exist j € {1, ..., 4m — 1}, such
that Rs(e;) = 0.

Thus, the tangent space can be split into TxM = Dg(x) & @é(x), where x € M
and

Do(x) = span{e; € {ex}{"]" | Re(ej) =0} atx,
D¢ (x) = span{e; € {ex}{"" | Re(er) #0}  atx.

Since & = &1, the equation (1.4) is reduced to

SX = (@Am+T7X —Tn(X)§ = 2m(X)& — 2n3(X)&;3
+ ¢p1pX + hAX — A%X. (3.7)

@ Springer
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By (3.4) and (3.6), putting X = ¢; € Dg(x) into (2.8) (resp., (3.7)), we have

0= (1+arje; —nle;)(@* + D& +2m(e))E + 2n3(e))Es — dige;, (3.8)
tiej = (4m + 7+ hij — Aej — Tnlej)E — 2ma(ej)ér — 2n3(e)Es + pide;.
(3.9)
Combining (3.8) and (3.9), we get
(4m + 8+ hhj — A% +akj —t))ej = (@ + 8)n(e))é. (3.10)

Since Rg(X) never vanishes for all tangent vectors X belongs to ®;(x). Thus,
SR:(X) = 0 R:(X) isequivalent to SX = o X forany X € D (x). Since R (§) =0,
the Reeb vector field & belongs to D¢ (x), thus dim Dg(x) > 1.

Now, we may consider the following cases:

Case I dim Dp(x) = 1.

Inthiscase, T,yM = Do(x) BD1(x) = [£](x) PD(x). Since D1 (x) is ¢-invariant
vector space and S& = o0&, we have SX = oX for any tangent vector field X
on M. Thus, we have S¢p = ¢S. By a result of Suh [15, Theorem]: Let M be a
connected orientable Hopf hypersurface in G,(C”*?) with commuting Ricci tensor,
ie., S¢ = ¢S, m > 3. Then M is locally congruent to a real hypersurface of Type (A).

Case Il dim Dp(x) = £ > 2.

In this case, T\M = Dg(x) & D(x). Since the Reeb vector field & satis-
fies A& = o, R:(§) = 05 and S& = o0&, we may put Do(x) = [£](x) @
span{eg,, ..., €kjs - ex,}, where j > 2. Then we have n(ekj) =0for2 <j <l
Putting X = ¢; into (2.8) and (3.7), we have

0= Re(ex;) = (1 + ahg;)er; + 2n2(ex; )62 + 2n3(ex; )53 — pider;, (3.11)
tiyer; = Sex; = (4m + 8+ hig, — A, + ahy) ey (3.12)

If we apply the shape operator A to (3.11), we obtain

0= (1+ark)Aek; +2n(ek;) A&y + 2n3(ex;)AS3 — A1 ey,
= (24 akk;)Ak;ex; -

So we may consider the following two subcases:

Subcase I 2 + akkj =0, where j > 2.

2
2+ ari; =0 (i.e., A, = ——). (3.13)

Using (3.13), (3.11) is changed into

0= —ex; + 2ma(ex;)52 + 2n3(ex; )63 — P1dpey; . (3.14)
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Applying ¢ to (3.14), we have

Prex; = 2malex; )53 — 2n3(ex; )62 + ek, . (3.15)

Since & = &1, (1.5) is reduced to
APAX = %A¢X + %W\X +¢X + 1 X —2m(X)E3 + 2n3(X)62.  (3.16)

By putting X = ¢; into (3.16) and by using (3.13) and (3.15), we get

—2u

A¢€kj = O'3¢€kj where o3 = a2—_{_4 (317)

Substituting X = ¢ey; into (1.2) (resp., (1.3)) and using (3.17), we obtain
Re(¢ex;) = (ao3 + 2)¢ex;, (3.18)
Sper, = (4m + 6 + hos — 03) ey (3.19)

By using (3.18) and (3.19) and substituting X = ¢ey; into (3.1), it follows that

6+ o3h — ha — 032 + az)(aa3 +2)¢er; = 0.

Since ao3 + 2 = a%s > 0 (i.e., o3 + 2 never vanishes), we have
6+ o3h —ha —of +a® =0, (3.20)
2 (2)?
Sekj =|4dm+6—h——|— ek;- (3.21)
o o

By using (3.19), (3.21) and putting X = ¢ex;, Y = ¢; into (**), we obtain

(03 n 3) (h —ost 3) R(gex,, ex,)Z = 0. (3.22)
o o

By (3.17), the coefficient factors of (3.22) never vanishes, due to 03 + % = m #0
4 2 .

and by (3.20), h — o3 + % = "% # 0. Thus, (3.22) is reduced to
R(pek;, ex;)Z = 0. (3.23)

By putting Z = ¢; into (3.23) and by using (1.1), the structure tensors ¢ and ¢, are
skew-symmetric and 7 (ex;) = 0, we have the following equation.

0 = R(gex;, ex;)ex;
= glex,. ex,)per, — g(@ ex;, ex,)ber, — 28(d e, . ex,)pe,
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3
+ Z { _g(¢v¢ekja ekj)¢vekj - 2g(¢v¢ekjs ekj)¢vekj
v=1
+ g(¢l)¢ek_/ ) €k; )¢V¢zek_,' } + g(Aekj > €k; )A¢ek_j

3
= (44 hi;03)der; —4 D g(duden;. ex;)puex;- (3.24)

v=1

Taking the inner product of (3.24) with pek;, we obtain

3
0= (4+ht;03)g(dex;. pex;) — 4 D g(dvder;. ex,)g(buex; . pex;)

v=1

- 4(0[212) +4Zg (Pvdpex;, ek;),

where we have used A; = —% and 03 = (;2—2‘1. Since the right side of the equation is
greater than 4, this is a contradiction. Thus, Subcase I cannot occur.

Subcase I1 Ak; = 0, where j > 2. Putting X = ¢y; into (2.8),
0 = Re(ex;) = ex; + 2ma(ex;)62 + 2m3(ex; )63 — P1pey; . (3.25)
Applying ¢ (resp., A) to (3.25), we have

0 = ¢rex; +2ma(ex;)é3 — 2n3(ex;)&3 + gex;, (3.26)
0= Adiex; + 2m(ex;) As3 — 2n3(ex;) A&3 + Ade; . (3.27)

By (2.10), we get
Aqblekj =0. (3.28)

Putting X = ek, into (3.16), we obtain
(07
= §A¢€k_,- + 4nz(ex; )62 — 4na(ex;)és. (3.29)

Taking the inner product of (3.29) with ¢ ex; and using (3.28), we have n%(ekj) +
n3(ex;) = 0, that is,

n3(ex;) = ma(ex;) = 0. (3.30)
By using (3.28) and (3.30), (3.27) becomes

Ader, =0. (3.31)
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By (3.26), (3.31) and putting X = ¢ekj into (2.8), we get
Re (¢ex;) = pex; + 2n3(ek; )52 — 2na(ex; )63 + drex; + aAder; = 0.

Thus, Do (x) © [£](x) is ¢p-invariant. By virtue of (3.10), S has the same eigenvalue
4m + 8 corresponding to each ¢; € Do(x) © [](x), where j > 2. Since S§ = o,
Do(x) © [E](x) is ¢-invariant and SX = o X for X € D(x), we have S¢pX = ¢pSX
for all tangent vectors X on M. Again, by [15, Theorem], M is locally congruent to a
real hypersurface of Type (A).

Now, we verify whether a real hypersurface of Type (A) denoted by M4 satisfies
the assumption in our Theorem. We assume that M 4 satisfies the condition of Ricci
semi-symmetric.

Putting Y = & and Z = £ into (2.1), we have

SR:(X) = o R (X), (3.32)

where ¢ = 4m + ha — o>

In [2, Proposition 3], we obtain the following:

(4m + ha — a®)& if X=£¢€T,
Sx — (4m+6+hg—BHE, if X=§¢€Tp
T ldm+6+hmr—2HX if XeT
(4m + 8)X if XeTy,
0 if X=¢€eT,
| @B+2E  if X=£,€Tp
Re(X) = (@rh+2)pX if XeTy
0 if XeT,, and

o= «/§cot(x/§r), B = \/zcot(ﬁr), A= —\/Etan(\/fr), n=0.
Putting X = & (resp., X € Tj) into (3.32), we have

6+ hB — B2 = ha — o2, (3.33)
6+ hi — A% = ha — o>, (3.34)

Combining (3.33) and (3.34), we have (h — B8 — X)(B — 1) = 0. Since B # A, it is
h—pB—xr=0. (3.35)
Combining (3.35) and (3.33), we have
4=ha—ao®= BA.
This contradicts to the value of 8 and A.

Hence, the model space M 4 in G, (C"*2) does not satisfy the Ricci semi-symmetric
condition. O
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1288 Y. J. Suh et al.

For a Hopf hypersurface with & € O, by [7, Main Theorem], we know that M is
locally congruent to a real hypersurface of Type (B). Now we check whether a Hopf
hypersurface of Type (B) denoted by M p satisfies the Ricci semi-symmetric condition.
On TMp,since &£ € Qand h = Tr(A) = o + (4n — 1) is a constant, putting ¥ = &
and Z = £ into (*), we have

SR:(X) = opR: (X)), (3.36)

where o = 4m + 4 + ha — o2
In [2, Proposition 2], we obtain the following:

4m+4+ha—ao®)E if X=(€T,
Am+4+hg—BHE if X=£6¢€Tp

SX =1 (4m + 8)p& if X=¢&¢eT, (3.37)
@m+T+hr—2HX if XeT,
@m+T+hp—p>HX if XeT,,

-

0 if X=£6€eT,
01,3‘5[ if X= E@ € Tﬁ
Re(X) = | 40& if X=¢&¢cT), (3.38)

(1+aMpX if XeT,
(1 +aw¢X if X €T,.

Putting X = ¢¢& (resp., X € T,) into (3.36). It gives hf — B% = 4 and hB —
B% = — 1.1t causes a contradiction.

Remark 3.2 The model space of Mg in G,(C™*2) does not satisfy the Ricci semi-
symmetric condition.

Combining Lemmas 2.1, 3.1 and Remark 3.2, this completes the proof of Theorem
in the introduction.
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